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Résumé. L’intérét pour I'IA explicable s’est récemment vu renouvelé, et nous
pensons que ces approches permettent de faire une vraie différence dans le dé-
ploiement d’IA, particulierement dans le monde de I’entreprise. Dans cet article
nous introduisons un cadre permettant de catégoriser les niveaux d’explicabilité,
leurs impacts dans 1’opérationnalisation d’IA, et leurs prérequis.

1 Introduction

The explainability of Al has become a major concern for Al builders and users, especially
in the enterprise world. As Als have more and more impact on the daily operations of busi-
nesses, we see trust, acceptance, accountability and certifiability become requirements for any
deployment at a large scale.

1.1 XAI

Explainable Al (XAI) as a field was popularized by the eponymous DARPA program
launched in 2017, with the goal of creating a suite of machine learning techniques that produce
more “explainable” models while maintaining a high level of learning performance, thus en-
abling human users to understand, trust and effectively manage the emerging generation of Al
systems (Gunning, 2017).

Over the past 5 years, explainability has become a key part of the Al industry strategy for
countries (Holdren et Smith, 2016; Villani et al., 2018) or research institutions (Braunschweig,
2016). It is also a strategic axis for companies, small (Mars, 2019; Guggiola et al., 2018) or
large, for example through the publication of open source libraries (Microsoft, 2019; IBM,
2019) or dedicated services (Google). Major Al conferences dedicate workshops to this topic
(e.g. First Workshop on Explainable Artificial Intelligence (XAI) IJCAI 2017). Specialized
MOOC are being launched (Becker, 2019).

1.2 What is an explanation?

Explainable Al is about providing explanations regarding Al processes to stakeholders, it is
therefore interesting to look at how people explain their decisions to each others. Specifically,
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the design of XAI can benefit from the learnings of social sciences on explanation. In his
thorough review, Miller (Miller, 2019) studied works from various branches of social sciences
from philosophy to cognitive science and psychology.

The surveyed body of work tends to show that people seek to build a mental model of
how decisions are made or how events occur, in order to anticipate them and reason about
them. Explanations are a way to build such models much quicker than through observation
only. Because mental models are inherently subjective, good explanations are biased towards
the explainee to match their perspective and their preexisting knowledge. In the real world
examples we describe below, we found that the work of understanding the point of view of the
explainee is a major part of the design of explainable Als.

Another major finding is that good explanations are contrastive. It is not about answer-
ing “why has event E occurred?” but rather “why has event E occurred instead of another
event C?”. We found out that the capability to generate such constrative or counterfactual
explanations is quite important in the deployed systems we describe in section 2.2.

Miller argues that Explainable Al as a field should be considered at the crossroad of Social
Science, Human-Computer Interaction and Artificial Intelligence. Taking a more practical
approach, in this article we will take the point of view of the people and systems interacting
with Al systems, and study how explainability impacts these interactions in terms of features,
acceptance and capacity to be deployed.

2 How XAI makes a difference

In order to study the impact XAI makes on Al projects we are categorizing effects in three
stages described in Fig 1. Higher stages require higher levels of explainability and have more
impact on the resulting Als. We take the point of view of the industrial world, and look at how
explainability can make a difference in the deployment and application of Al

This work is based on the experience we gathered working and discussing with our cus-
tomers, partners and community, as a provider of machine learning solutions. Examples are
focused on systems based on Machine Learning but the proposed three stages are relevant to
any kind of AL

2.1 Stage 1: Explainable building process

In any organisation, just like any IT project, a project leveraging Al aims to have an impact
on the daily job of some people. Its goal might even directly be to automate part of worker’s job
or to help them deliver value they could not before. Especially when Al is involved, affected
users can be wary of the new system. In particular they may feel threatened by the automation
of some of their tasks, or may not believe that a simple computer program can execute complex
tasks correctly. A recommandable method to address those concerns is to involve them in the
building of the Al This is where explainability plays a big role.

In this context, traditional quality metrics such as confusion matrices, r2, RMSE, MAE,
etc. are not sufficient to get the future Al user’s trust, since they want to know more about
the why than about the raw results. Visualization is the first go-to technique. Simply plotting
the output against context variables is a good way to get a feel for how an Al performs over
the target domain when dimensionality is low. Interactive simulations can help explore the
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domain to experience how the AI will react. Beyond these techniques which are applicable to
any black box computations, more advanced techniques open the hood and make the structure
of the Al itself inspectable.

In the following sections describing the subsequent stages, we will talk about techniques
able to work while the Als are live, processing production data, at production speed. These
techniques are also well suited for stage 1, where the inspection is offline, with less data and
runtime constraints.

Debugging tools that were initially designed for data scientists can also be leveraged for
other stakeholders. Als powered by neural networks can be inspected by visualizing how in-
termediate layers react to different input, Tensorflow Playground (Smilkov et Carter) or Con-
vnet]S (Karpathy, 2014) are good examples of this approach. On images, the computation of
saliency maps can also help to convey which parts of the image are considered by the network
to make its prediction (Simonyan et al., 2013). This technique led to the identification of the
infamous husky vs wolf issue in which a wolf is primarily identified by the presence of snow
in the picture (Ribeiro et al., 2016b). Tools like Seq2Seq Vis (Strobelt et al., 2018) bring the
same kind of debugging capabilities to natural language focused neural networks. This shows
that even neural networks, which are considered black boxes, can be at least partly explained
offline to the non-technical Al project stakeholder by using the right tools.

While the initial goal of explaining why the Al works the way it does is to ease its adoption,
explainability also increases the involvement of potential users by letting them achieve a deeper
understanding. As a result they can assist in its development, ensuring that the Al solves an
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actual problem, and provide valuable feedback on specific behaviors of the Al: instead of
providing knowledge upfront, it is always easier to react to what you see the Al doing and
why it does it. In many cases, domain experts can easily help if they have an understanding of
why the Al makes decisions: sensors having an undocumented validity domain, well-known
contexts leading to corrupted data, spurious correlations because of a missing data sources, etc.

The first stage of explainability is about helping create a multi disciplinary team of ex-
perts in their respective fields who understand the Al they are building. Offline explainability
techniques are key to the acceptance of the future Al and create opportunities to build a better
system.

2.2 Stage 2: Explainable decisions

Trust in a system is key, especially in an enterprise tool that has an impact on day to day
business. Trust makes the difference between a system that is “micro managed” by its users or
supervisors, and a system that can enjoy a larger autonomy. The more management a system
needs, the more manpower it requires and therefore the less value it has.

Trust is built when a system is not surprising, when it behaves according to our mental
model. A system whose limits are understood by its users is arguably more valuable than a
more accurate system whose results are considered unreliable. As discussed in section 1.2,
explanations are a good way to accelerate the construction of this mental model. That is where
the capacity to explain the Als’ decisions has an impact. That is the second stage of explainable
AL

Stage 1 explainability does not have the same impact: most users or supervisors of Als
did not have the chance to participate in their inception, and in more and more cases, Als can
evolve over time. Furthermore, the ability to access explanations of past Al decisions can help
pinpoint root causes and generally provide traceability.

The ability to provide explanations to any Al decision is an active field of innovation with
methods such as Treelnterpreter (Saabas, 2014), LIME (Ribeiro et al., 2016a) or SHAP (Lund-
berg et Lee, 2017). Given a predictive model and a prediction, these methods aim at providing
a local explanation for the prediction. This explanation takes the form of linear factors that
can be applied to input features to reach the predicted results, thus giving an idea of the local
feature importance and behavior of the model. The computed feature factors can also be used
to generated counterfactual examples and give an idea of the trend of the predicted value given
changes in the input features.

An interesting property of this class of algorithm is that they can work using a feature set
that is different from the actual feature set used by the model. It is therefore possible to adapt
the explanation by making it more comprehensible to the explainee, independently from the
features that yield the best predictions. This additional feature engineering step is not without
risk, as it can be used to convince explainees to blindly trust said Al, by presenting a deceptive
approximation instead of bringing more transparency (Denis et Varenne, 2019).

A good example of SHAP usage can be found in the banking fraud detection solution
(Mars, 2019) provided by the Bleckwen company. One key part of the solution is a predic-
tive model, trained on labelled datasets containing fraudulent and non-fraudulent transactions.
This model computes a score for each transactions. Transactions having a score above a certain
threshold are reviewed by a human expert to confirm their fraudulent nature. One of their cus-
tomers’ requirements is to get explanations for every score. They chose to use non-explainable
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gradient boosting techniques for the model on a range of complex features. The local explana-
tion is computed by SHAP on a range of features they designed with their end users to make
them completely understandable to them.

Another example of stage 2 explainable Al is how Dalkia uses machine learning as a part
of their energy management dashboard. Here, decision trees are used to predict an energy
diagnosis based on labelled data streams. Predictions are used as diagnosis recommendations
in the energy managers’ dashboard, and explanations are extracted from the decision tree as a
set of rules that were applied (craft ai, 2018). What’s really interesting in this example is that
without explanations alongside the recommendations this AI would not have any value. At its
core, the goal of the system is to help energy managers handle more data points. Without an
explanation, when provided with a prediction, energy managers would need to investigate the
raw data in order to confirm or contradict it. They would end up doing the same amount of
work as without explanations. When an explanation is provided, this counter investigation is
only needed when the energy manager disagrees with it. Here, explanations are needed for the
business value of the Al

2.3 Stage 3: Explainable decision process

Stages 1 and 2 are about helping humans create a mental model of how Als operate. This
enables humans to “reason” about the way Als work critically, and decide when to trust them
and accept their outputs, predictions or recommendations. To scale this up to many Als and
over time, you need to define business logic that will apply the same “reasoning” automat-
ically. Stage 3 is about enabling interoperability between Als and other pieces of software,
especially software that uses business logic.

When discussing Al, and especially models generated through machine learning, we often
talk about the underlying concepts they capture, for example convolutional neural networks
are able to recognize visual patterns and build upon these lower level “concepts” in their
predictions. Als that can explain those lower level building blocks, make them inspectable to
business logic, reach stage 3. Such Als ultimately act as a knowledge base of the behavior they
model.

Stage 3 explainability makes a difference especially when a lot of instances of evolving Als
need to be supervised by business logic, for example in a context of continuous certifiability
or collaborative automation between machine learning based Als and business rules.

This level of explainability requires fully explainable AI. Machine learning techniques such
as linear regressions or decision tree learning (Quinlan, 1993) can reach such levels. Another
approach is to approximate a more “black box” model with a more explainable model, for
example RuleFit is able to learn a minimal ensemble of rules from a tree ensemble method
such as Random Forest (Friedman et al., 2008).

An interesting example of level 3 explainability is Total Direct Energie’s energy coach-
ing feature that is part of their customer-facing mobile application. It generates personalized
messages for each customer (craft ai, 2019). At its core, the system is made of a machine
learning-based energy consumption predictive model, and a business expertise-based message
generation and selection module. The predictive model is made of individual regression trees,
each updated continuously from the data of a single household. The message generation mod-
ule is generic for all users, and uses the model’s explanations and predictions as input data to
select and personalize each message. So the predictive models provide an understanding of
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the household’s energy consumption behavior, which is automatically processed to generate
personalized messages.

When presented with a visual explanation of a decision process, people tend to navigate
through its structure to understand the process. Stage 3 is about letting software programs,
other Als, do the same thing, thus unlocking a wealth of additional use cases.

3 Challenges

While there are already deployed Als covering these three stages, there are still challenges
ahead before explainable Al can be generalized.

3.1 Evaluating explanations

In the previous sections we discussed how certain techniques bring more or less explain-
ability, however we did not discuss how we can make such an assessment.

Ad-hoc experiments or KPI can be used. For example the D-Edge company, which pro-
vides pricing recommendations to hotel managers among other services, measures whether
explained recommendations are accepted. Every recommendation is accompanied by a natural
language explanation. Managers can accept and apply the recommendation to their pricing or
discard it. As presented during a round table focused on XAI (Mars, 2019), they consider the
proportion of accepted recommendations as a proxy measure for the quality of their explana-
tion. We believe that this makes sense, as hotel managers need to be convinced to make such
an impactful change to their business.

In the general case, other proxy measures can be used, such as the number of rules, nodes
or input variables considered in an explanation or explainable model. However these lack gen-
erality: how can the explainability of a linear regression and of a regression tree be compared?
They also lack an experimental, measurable ground truth: for example we do not know if hu-
mans find that the explainability provided by LIME grows exponentially or linearly with the
number of features involved. Furthermore, as discussed in section 1.2, what constitutes a good
or a bad explanation depends on the recipient of the explanation and their own cognitive biases
(Denis et Varenne, 2019). This poses an additional challenge to this evaluation. There is a
lack of a systemic framework or objective criteria to evaluate the explanations provided by Als
(Weller, 2017).

3.2 Improving the performances of XAl

The Al community generally considers that the more explainability you gain, the less pre-
dictive performance you can achieve, especially in Machine Learning. Overcoming this is a
primary goal of the XAl field, and in particular it is the main goal of the DARPA XAI program
(Gunning, 2017). Several opportunities have been identified to achieve this objective, the most
promising ones being to create hybrid Al combining different approaches. One idea is to push
high-performance but unexplainable algorithms to the edges, around an explainable core. For
example in cat image recognition, a deep neural networks would identify low level details like
whiskers and pointy ears, while decision trees or bayesian models would associate the presence
of both whiskers and pointy ears to a cat in an explainable fashion. Another idea is to adapt
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Machine Learning algorithms to work from existing expert-built symbolic representations of
physical models to leverage existing knowledge, instead of having to relearn and embed it.
This field is relatively new, and comes as a stark departure from the deep learning trend of the
past few years.

4 Conclusion

In this paper we structured in three stages the impact that explainability can have on Al
applications deployed in the “real world”. Those 3 stages provide a simple framework to
quickly identify the need for explainability in a Al powered project. Stage 1 is about leveraging
explainability to improve the adoption and performance of Al applications. Stage 2 is about
explaining every Al decisions to build trust with their users and supervisors. Stage 3 is about
enabling the interoperability of Al systems with each other and other software, thus unlocking
new and richer use cases.

Because we focused on what explainability enables in Al, we did not discuss regulation.
However it is important to note that initiatives such as the European GDPR pave the way for
a “right to explanation” which will require, at least in some cases, a stage 2 requirement
(Burt, 2017). We strongly believe that stage 2 explainability is a key to actually operationalize
enterprise Al because it not only offers stronger guarantees in terms of data governance, but
also facilitates involvement and support from users and domain experts impacted by such Al

Far from being just a constraint on Al design, explainability helps develop better and richer
Als.
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Summary

Explainable AI has recently seen a renewed interest. We believe these techniques make
a true difference when it comes to deploying Als, especially in the entreprise world. In this
article we introduce a framework categorizing explainability levels, their impact on opera-
tionalized Al and their requirements.
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