
209

Hierarchical Architecture for
Group Navigation Behaviors
Clodéric Mars and Jérémy Chanut

20

20.1  Introduction

It is now fairly common to find autonomous human-like characters that are able to nav-
igate in 3D environments, finding paths and avoiding collisions while exhibiting con-
vincing navigation behavior. In the past few years, several major publications have been
applied successfully to games: we now have well-tested recipes to generate navigation
meshes (nav meshes), compute paths, have pedestrians follow them, and avoid collisions
in a convincing way.

However, we still fall short when it comes to group navigation. Like real groups, we
want virtual humans to be able to walk down roads with their group of friends. Like
real ones, virtual soldiers should be able to patrol while staying in formation. And
like real ones, virtual tourists should be able to enjoy a tour of the Mont Saint-Michel fol-
lowing their guide’s umbrella.

The aim of this chapter is to provide a base recipe to implement a group navigation sys-
tem. The first two sections form an introduction, presenting the different kinds of group
navigation and the basics of navigation behaviors. The next section presents our proposed
hierarchical architecture, and the following sections present different aspects of its design.

20.1	 Introduction
20.2	 Group Navigation
20.3	 Navigation Pipeline

Architecture
20.4	 Group to Members

Relationship Model
20.5	 Pathfinding

20.6	 Emergent Group Structure
20.7	 Choreographed

Formations
20.8	 Group Collision

Avoidance
20.9	 Conclusion
References

210 Movement and Pathfinding

20.2  Group Navigation

Taxonomy can be a daunting word, but classification can help establish a common
understanding. Reading the navigation simulation literature, three main categories of
approaches can be found: flocks, formations, and small “social” groups.

20.2.1  Flocks
A flock is, by definition, a group of birds traveling together. Flocking strategies for naviga-
tion can be applied for other animal species as well as humans (e.g., school children cross-
ing the street to the swimming pool).

Entities in a flock travel at roughly the same speed and form a cohesive group without
strict arrangement. Figure 20.1 showcases such a flock; you can notice that entities are not
facing in the same direction and are not evenly distributed. Generally, an entity in a flock
will follow independent local rules to stay in the group. While the term is primarily asso-
ciated with a large number of entities, the same kind of strategy can be used for groups of
only a few members.

Reynolds popularized flocking simulation in what must be the two most cited articles in
the field, making their implementation a well-known subject [Reynolds 87, Reynolds 99].

20.2.2  Formations
While flocks emerge from a set of individual rules enforcing the general cohesion of the
group, formations are a kind of group arrangement where members enforce a set of strict
top-down rules. The first and most important one is the formation’s spatial arrange-
ment, that is, the relative positions of members; it is designed for tactical, aesthetic, or
other specific purposes. Most of the time, a formation gets much of its usefulness from
allocated fields of fire and sight, which is why orientation is also enforced [Dawson 02].

Figure 20.1

A flock of navigating entities.

211Hierarchical Architecture for Group Navigation Behaviors

The last rule is to assign entities having the right role to the right slot: archers at the back,
foot soldiers facing the enemy.

Figure 20.2 showcases a formation of nine entities in three layers dedicated each to a
specific role, represented by the entities’ colors. As formations are important for real-time
strategy games, interesting and working solutions have been known for some time: Dave
Pottinger, who worked on the Age of Empire series, presented his in a Game Developer
Magazine article, which is now available for free at Gamasutra.com [Pottinger 99].

20.2.3  Social Groups
Beyond amorphous flocks and rigid formations, groups that are more common in our
everyday lives are small and their spatial configuration is the result of social factors and
crowd density.

In two different surveys focusing on those small social groups, the authors showed that
there are more groups than single pedestrians in urban crowds and that groups of more
than four are very rare [Peters 09, Moussaïd 10].

Furthermore, it appears that the formation assumed by the observed groups is influ-
enced both by the lateral clearance to nearby obstacles and by the need of social interac-
tion between members of the group.

These two surveys show that social groups tend to follow three preferred formations
depending on the density of the crowd. When motion is not constrained (i.e., when obsta-
cles are far and the crowd density is low), a group tends to adopt an abreast formation that
facilitates dialog between its members (leftmost formation on Figure 20.3).

When facing navigation constraints, the group compacts the formation to reduce its
frontal width. And, when the lateral space between members becomes too thin, that is,
when members are shoulder to shoulder, the formation is staggered. The bending of the

Figure 20.2

A formation of navigating entities.

212 Movement and Pathfinding

group is, most of the time, forward (V-like formation—in the middle in Figure 20.3) to
maintain good communication. A backward bending (inverted-V-like or wedge forma-
tion) would be more flexible moving against an opposite flow but seems to be less usual.
As the crowd density increases, groups tend to form a tight lane (rightmost formation of
Figure 20.3).

Another observation found in these studies is that groups tend to avoid collisions with
other pedestrians or with obstacles while remaining together, but if needed, they are able
to split and merge back afterward.

In the following section, we introduce a way to efficiently include the group navigation
process into a software architecture.

20.3  Navigation Pipeline Architecture

Before delving into topics specific to group behaviors, in this section, we will give a quick
overview of what we call navigation behavior and the navigation pipeline that makes it
possible to combine them.

20.3.1  Navigation Behaviors
Typically, a navigation behavior is responsible for computing velocity changes from

•• Higher-level individual orders
•• Other entities (e.g., neighbors to take into account for collision avoidance)
•• And, generally, the state of the world (nav mesh, scene geometry, etc.)

As illustrated in Figure 20.4, this input is usually a path to follow. Paths are computed to
reach a target, which is selected by some decision-making code. It then outputs orders
driving a locomotion engine that actually makes the entity move.

This architecture supports partial updates. For example, the navigation behavior
and the following components can be updated on their own by reusing the previous
navigation orders. This allows a compromise between costly components that do not
require high reactivity (such as decision making or path finding) and cheaper ones
that benefit from a high update frequency (e.g., physics or animation) [Mononen 10,
RecastDetour 14].

Figure 20.3

Social navigation formations, from left to right: abreast, V-like, lane.

213Hierarchical Architecture for Group Navigation Behaviors

20.3.2  Navigation Pipeline
In real-life scenarios, entities exhibit different navigation properties and are able to handle
several types of orders and constraints:

•• An entity can reach a target
•• Wounded and thus not walking straight
•• While it is avoiding obstacles

In order to model this kind of complex behavior, we use a navigation pipeline: a sequence
of navigation behaviors.

At runtime, the behaviors are updated sequentially, each considering the state of the
entity as well as the orders output by its predecessor in the pipeline. In practice, each
behavior “corrects” the orders of the previous one.

Consider the “wounded” behavior in the pipeline of Figure 20.5. The previous behavior
computes a velocity that makes the entity follow a path. The “wounded” behavior will use
this desired velocity as an input and compute a new one that is close to it by applying some
noise function. In turn, the “collision avoidance” behavior will correct the orders to avoid
future collisions. As the last behavior in the pipeline, it has the last word on the actual
decision.

This architecture comes with two great benefits: modularity and reusability. In the case
of groups, member entities behaviors need to take into account both the collective goals,
for example, flock or stay in formation, and the individual goals, for example, avoid col-
lisions early or minimize deviation from initial trajectory. Modeling these as navigation
behaviors and using the navigation pipeline architecture gives us a flexible framework to
fulfill these requirements.

Decision

Pathfinding

Navigation orders (e.g., follow a path)

Movement orders (e.g., velocity)

Locomotion

Navigation behavior
(e.g., path following)

Figure 20.4

Typical character update loop involving navigation.

214 Movement and Pathfinding

In the following sections, we’ll see how the navigation pipeline can be used to model
the described group navigation behaviors.

20.4  Group to Members Relationship Model

While some behaviors might be decentralized, in order to manage groups in a context
where we need to make them go from A to B, top-down decision making is needed
[Musse 01]. A group-level process will be able to make the group move while each of its
members follows. Two very different approaches can be used:

	 1.	 Make one of the group members the leader.
	 2.	 Introduce a virtual entity representing the group itself.

The two following sections will describe the two approaches through their use in the tech-
nical literature; the third will describe how we propose to implement an entity hierarchy.

20.4.1  Leader
When trying to enforce a strict equivalence between simulated entities and actual char-
acters, many approaches rely on a leader–followers approach. With such an approach,
one member of the group is the leader and the others are the followers. The leader takes
responsibility for the whole group’s navigation [Loscos 03, Qiu 10].
Implementation using a navigation engine for independent entities is straightforward:

•• The leader is similar to any entity.
•• The followers maintain a reference to their leader and follow its decisions.

However, the leader cannot reuse the exact same navigation process as an independent
entity. Its navigation must take into account the bulk of the whole group as well as the
different locomotion constraints of its followers. It is also better to differentiate the lead-
er’s own attributes (position, orientation and velocity) from the group’s [Millington 06].
Taking all these constraints into account makes the decision-making process of the leader
very different from those of the other members.

20.4.2  Virtual Group Entity
Noting that the leader-based approach has several flaws, a growing proportion of
architectures chose to move the group “anchor” from the leader to a virtual group

Navigation orders

Movements orders

Path following Wounded Collision avoidance

Figure 20.5

A navigation pipeline using three navigation behaviors.

215Hierarchical Architecture for Group Navigation Behaviors

entity [Karamouzas 10, Schuerman 10, Silveira 08]. This virtual entity is similar to any
other simulated entity but does not have a visual or physical representation. In such
an architecture, the group members are identical to one another. The group entity cre-
ates a one-level-deep hierarchy of entities. This approach can be taken a step further
to create groups of groups and so on [Millington 06, Schuerman 10], allowing a more
structured crowd.

Such hierarchical separation of responsibility leads to a cleaner software architecture
as well as arguably simpler behaviors, but it is also slightly more complex to implement. In
the following section, we’ll describe the design choices we made when doing this.

20.4.3  Hierarchical Entity Architecture
In our architecture, we build upon the virtual group entity approach to create a hierarchy
of entities (see Figure 20.6). Everything is an entity and is handled in the same way in our
navigation loop; groups are composites of entities.

This hierarchy allows us to differentiate the group from the individual. An individual is
the most basic entity we can have in our simulation. Groups, on the other hand, are entities
containing other entities. It is a fairly standard implementation of a composite pattern.

Navigation behavior algorithms need information about the entity they are working on
(position, velocity, orientation, etc.). They could take these from the entity, but the situa-
tion is more complicated when working with groups, because a group’s properties depend
on its entities. The way to define this relationship can be tricky to get right; here are the
key ideas:

•• The group’s position can be computed from the members as their barycenter.
•• Its bulk can also be computed either as a radius or as an oriented bounding box.
•• Its orientation is tricky to define from the members; the best course of action is

to tie it to the group’s velocity or to have specific navigation behaviors handle the
group’s rotation [Millington 06].

•• Its maximum speed, acceleration, and other movement limits need to be com-
puted from the entities so that they are able to follow the group. For instance,
the maximum speed of the group should be below the smallest of the members’
maximum speeds. It is also important to consider that the maximum rotation rate
of the group needs to take into account the maximum speed of its members and
the width of the group.

•• Finally, its velocity is independent, as we want the entities to “follow” the group.

Entity

Individual Group

Figure 20.6

Entity hierarchy.

216 Movement and Pathfinding

As we mentioned, a navigation behavior only relies on its “orders,” the state of the world,
and the state of the following entities:

•• The one it is working on
•• Its parent and/or children, used, for example, by formation slots assignment (dis-

cussed later)
•• Its geometrical neighbors, used, for example, by collision avoidance

This means that it is easy to make the entities’ navigation processes completely indepen-
dent from one another by keeping the previous simulation update state as a read-only
input. Thus, allowing easy multithreading.

One drawback is that the entity hierarchy has to be static from the point of view of the
navigation behaviors. In other words, a navigation behavior cannot split or merge groups.
The preferred approach to control groups’ creation and membership changes is to treat the
group hierarchy as an external parameter akin to a path planning target. A higher-level
control layer is in charge of organizing groups; the navigation behavior should be resilient
to these changes when they occur between updates.

This architecture can be used to create hierarchies with more than one level. This
allows a complex structure and choreography for groups of entities with no actual addi-
tional cost.

One pitfall can be observed in deep hierarchies, however. Group members only take
into account orders computed by the group during the previous simulation update, thus
introducing a tiny delay. When adding layers of hierarchy, the delay grows linearly with its
depth. We believe that this is not a real-world problem as a deep hierarchy does not have
many use cases.

20.5  Pathfinding

One of the reasons to introduce group navigation is to factorize a costly aspect of
navigation: pathfinding. As the members of a group are expected to follow the same
high-level path through the environment, a single query should be sufficient for the
whole group.

The most important aspect of group-level path planning is to choose how to take the
bulk of the group into account. Contrary to a single entity where its bulk is static and thus
is a hard constraint, a group may be able to reconfigure itself in order to pass through nar-
rower corridors.

Therefore, the query has to be tuned in order to

•• Prefer paths on which the group, in its current spatial configuration, can navigate
•• Allow the use of narrower passages, for which the group can be reconfigured, if

necessary

This means that the cost of falling back to a narrower spatial configuration needs to be
comparable to the cost of taking a longer path [Bayazit 03, Kamphuis 04, Pottinger 99].

Once the path is computed, the path-following process provides local steering orders
resulting in the entity following the path. In some works, the group-level path-following

217Hierarchical Architecture for Group Navigation Behaviors

computation is also responsible for environment-aware formation adaptation, allowing
the formation to change when the clearance to obstacles changes [Bayazit 03, Pottinger 99].

20.6  Emergent Group Structure

In most modern navigation engines, the simulated entities are autonomous, with their
behavior relying on local “perception” to take action, not on an external choreographer.
With this approach in mind, it is possible to design decentralized navigation behaviors to
comply with group constraints.

20.6.1  Boids and Derivatives
At the core of Reynolds’ work [Reynolds 87, Reynolds 99], three steering forces allow enti-
ties to flock. For a given entity in the group, separation makes it move away from close
neighbors, alignment makes it go in the same direction as other members, and cohesion
makes it move toward the group’s anchor. The combination of these simple forces allows
the emergence of a simple flocking behavior.

Given the nature of this model, it is simple to add new forces or to change the rela-
tive importance of forces (e.g., more or less repulsion) to better control the structure of
the group. One example of such adaptation is the addition of a force modeling the desire
for members of small social groups to keep all group members in their field of view for
communication purposes [Moussaïd 10]. Another example is the modulation of members’
attractivity to better take into account social relations [Qiu 10].

20.6.2  “Local” Formations
With the same strictly decentralized approach and by taking inspiration from molecular
crystals, some formation control can be applied using an attachment site method. Each
entity defines several attachment sites indicating, relatively, where its neighbors are sup-
posed to be. When navigating, group members locate the nearest available site among
their neighbors’ and steer toward it.

The resulting formation arrangement is a direct result of the attachment sites position
and it can scale to any number of group members. But, as the attachment rules are local,
no control on the overall shape is possible; it is a good fit, though, for modeling social
groups [Balch 00].

20.6.3  Implementing an Emergent Group
To get an idea of how such an emergent group structure can be implemented using our
hierarchical architecture (see Figure 20.7), let us consider Boids’ flocking behavior. In the
by-the-book approach, given an initial velocity, the group will move cohesively in some
direction. But, an adaptation is needed to control the group’s movement.

Usually, a special entity is added: orders are given (e.g., a path to follow) to this leader,
who “drags” the rest of the group around. Using our approach, no physical leader is
needed. The group entity is the high-level order recipient and executor, and the group
members use its position and velocity as an input for their cohesion and alignment
behaviors.

218 Movement and Pathfinding

The algorithm unfolds as follows during each update (the order of these is not
important):

•• The group updates its position and current velocity based on its members and
then computes a new velocity based on a given path.

•• Group members compute their new velocity based on the group’s position (cohe-
sion), the group’s velocity (alignment), and the other members’ relative positions
(separation).

20.7  Choreographed Formations

While groups whose members are implementing local rules can exhibit convincing
behavior, they cannot take into account the group as a whole and thus are not fully con-
trollable. If exact group arrangement is needed, some of the behavior must be delegated to
a higher level of control [Musse 01]. In this section, we will study the three steps needed to
make a group stay in a given formation: formation design, slot assignment, and formation
following.

20.7.1  Formation Design
In the context of navigation, a formation is the specification of the spatial arrangement
of the members of a group. As we focus on pedestrians walking on the ground, each slot
of the specification has a 2D position; two properties might be added, an orientation and
a role (i.e., which kind of entity should be assigned to each slot). The slots are defined

Flocking

Path
following

Group

Individual

Using group’s position
and velocity

Wounded

Collision
avoidance

Figure 20.7

Flock architecture in our hierarchical group architecture.

219Hierarchical Architecture for Group Navigation Behaviors

relative to the group’s own position and orientation. The slots specification can come from
different sources for different use cases, such as military doctrine, artistic choices, or even
survey results.

The number of slots should match the number of entities in the group. If not, simple
techniques can be used to select the used slots or create needed slots [Silveira 08].

20.7.2  Slots Assignment
Before our entities can navigate as a group, each of them must be assigned slot. This might
seem trivial but should be implemented with care to avoid congestion between members
of the same group; this will affect the credibility of the simulation. The greedy approach of
each member being assigned the closest slot doesn’t always work: the entities might have
to cross each other’s paths and the last entities might have to circle around the group to get
to their slots [Dawson 02, Millington 06].

The best solution would be to globally minimize the distance the entities are covering
to get to their slots but its implementation would lead to an O(n!) complexity as every per-
mutation would have to be tested.

One solution works well when no specialized slots are defined: The general idea is to
sort the slots spatially then sort the members in the same way and assign the ith entity to
the ith slot [Mars 14].

20.7.3  “Blind” Formation Following
The most basic approach to formation following is to have members no longer be respon-
sible for their steering: members are placed on relative coordinates around the group’s
position [Pottinger 99]. This solution is fine if the group steering is robust.

Implementing this approach using our architecture is straightforward:

•• The group updates its position and current velocity based on its members and then
computes a new velocity based, for example, on a given path. Finally, it assigns a
slot to each group member. It is also possible and often desirable to extend the
group’s navigation behavior with collision avoidance.

•• Group members retrieve their slots and set their position accordingly.

One potential evolution of this approach is to assign group members a simple behavior
that can compute and apply the necessary velocities for reaching their slot’s position.

This makes it possible to customize the velocity application phase, taking into account
characteristics such as maximum speed or acceleration or delegating it to an external sys-
tem (e.g., locomotion).

When using this strategy, it is important to extrapolate the slot position to make
it nonreachable in a single simulation update. This will contribute to avoid motion
jolts [Karamouzas 10, Schuerman 10]. In practice, a simple extrapolation of the slot
position using the group velocity over a time period greater than the frame duration is
enough. This computation also handles gracefully nonmoving groups, as their veloc-
ity is null.

Additionally, the extrapolation time period can be controlled to define the “cohesion”
of the formation, a small value for a tight formation a larger one for a very “loose” forma-
tion. The farther the target is, the less it will impact the member velocity.

220 Movement and Pathfinding

20.7.4  Autonomous Formation Following
In most instances, members of a formation do not follow orders blindly. Instead, they
have an autonomous strategy to stay in formation. This is especially true when simulating
small social groups, where the formation is more of an emergent feature than a strict rule.
Furthermore, it allows entities to break formation to pass through tight corridors and
around small obstacles [Silveira 08].

This use case is where our architecture shines. The same strategy as before can be
applied and, to enhance the individuality of the members, their behavior can be extended
with (as shown in Figure 20.8)

•• Collision avoidance, so that groups do not have to micromanage everything to
avoid collisions between their members

•• Specific behaviors, allowing entities to have “subgoals,” for example, attraction to
store fronts

•• Specific velocity noise functions, to give them “personality”

While the same collision avoidance behaviors can be used by the entities whether they
are part of a group or not, they must be adapted. As a matter of fact, collision avoidance
algorithms, such as Reciprocal Velocity Obstacle [van den Berg 08], try to enforce a safe
distance to obstacles and other entities that might forbid close formations [Schuerman 10].

To mitigate this issue, a member’s behavior needs to either differentiate between its
peers (other members of the group) and the other entities or to be adapted when it is part
of a group by, for example, only considering imminent collisions.

Formation
following

Path
following

Group

Individual

Getting formation
slots from the group

Collision
avoidance

Personality
noise

Slots
assignment

Collision
avoidance

Figure 20.8

Autonomous formation following.

221Hierarchical Architecture for Group Navigation Behaviors

20.8  Group Collision Avoidance

In real life, groups tend to stay coherent when navigating between obstacles and among
other pedestrians, which is why it is interesting to use group-level collision avoidance.
Many existing algorithms for entities can be applied directly or adapted for group-level
collision avoidance. As we noted earlier, the main difference between groups and single
entities is that their bulk is not a hard constraint. The spatial configuration of a group can
be adapted to occupy less frontal space, less longitudinal space, or both.

20.8.1  Velocity Correction
Existing collision algorithms such as RVO can be applied by considering the bulk of the
group as a disc. The resulting collision avoidance is very conservative as the disc is, most
of time, greatly overestimating the real footprint of the group [Schuerman 10, van den
Berg 08].

To get better results, navigation behaviors of this family can be adapted to reason on
the group’s oriented bounding box [Karamouzas 04, Karamouzas 10, Peters 09].

20.8.2  Formation Adaptation
As discussed for path following, groups can spatially reconfigure themselves to change
their bulk; this idea can be applied for better collision avoidance.

Consider a couple, walking side by side in a corridor: a simple formation. When
another pedestrian arrives in the opposite direction, the couple will form a lane,
reducing their frontal bulk, allowing the crossing. This is an instance of formation
adaptation.

In RVO-like collision avoidance algorithms, several candidate velocities are computed
around the current velocity, the ones leading to future collisions are pruned and the
remaining one closest to the desired velocity is kept. The same approach can be used for
formation adaptation [Karamouzas 10]:

•• Define a set of formations the group can use and its preferred one (cf. Section 20.2.3
for social groups).

•• At each time step, interpolate a number of candidate formations from the group’s
current state to the formations of the initial set.

•• For each candidate formation, do an RVO-like evaluation outputting its “best”
velocity and time to collision.

•• Compute a cost for each candidate that take into account those values and the
distance to the preferred formation.

•• Take the lowest cost.

It is important to limit the number of candidate formations to preserve the performance
of the algorithm. The original work uses a set of five formations and interpolates three
candidates to each one of them, thus evaluating 15 in total.

Those group-level navigation methods allow the group to take responsibility for a part
of the collision avoidance and more easily preserve the group cohesion. They can be easily
implemented in our architecture as group behaviors and combined with finer granularity
entity level steering.

222 Movement and Pathfinding

20.9  Conclusion

In this chapter, we introduced a hierarchical architecture for group navigation, and we
have shown how it can be used to fulfill different use cases, flocks, formations, and social
groups, leveraging existing work. We proposed a generic framework to design and imple-
ment group navigation. A similar architecture was already implemented as a part of the
Golaem SDK [GolaemSDK 14] and it is our plan to implement it in the open source naviga-
tion engine Recast/Detour [RecastDetour 14].

Externalizing some of the tricky collaborative decision making to a virtual group entity
is one of the major design choices we made. Such “choreographer” entities are also a good
pattern to apply when a high degree of control is needed over a group of individuals: traffic
management around a door, group discussions, tactical synchronization, combat pacing, etc.
Moreover, as we have shown in the context of navigation, this centralized decision-making
method does not come at the cost of the individuality of each entity’s behaviors.

References

[Balch 00] Balch, T. and Hybinette, M. 2000. Social potentials for scalable multi-robot for-
mations. In IEEE International Conference on Robotics and Automation, San Francisco,
CA, pp. 73–80.

[Bayazit 03] Bayazit, O., Lien, J., and Amato, N. 2003. Better group behaviors in complex
environments using global roadmaps. In Eighth International Conference on Artificial
Life, Department of Computer Science, Texas A&M University, College Station, TX,
pp. 362–370.

[Dawson 02] Dawson, C. 2002. Formations. In AI Game Programming Wisdom, ed.
Rabin, S., pp. 272–282. Charles River Media, Hingham, MA.

[GolaemSDK 14] Golaem SDK. 2014. Available from: http://golaem.com/ (accessed July
10, 2014).

[Kamphuis 04] Kamphuis, A. and Overmars, M.H. 2004. Finding paths for coherent
groups using clearance. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Copenhagen, Denmark, pp. 19–28.

[Karamouzas 04] Karamouzas, I. and Overmars, M. 2004. Simulating human collision
avoidance using a velocity-based approach. In VRI-PHYS 10: Seventh Workshop
on Virtual Reality Interactions and Physical Simulations, Eurographics Association,
Copenhagen, Denmark, pp. 125–134.

[Karamouzas 10] Karamouzas, I. and Overmars, M. 2010. Simulating the local behaviour
of small pedestrian groups. In 17th ACM Symposium on Virtual Reality Software
and Technology, Hong Kong, China. Center for Advanced Gaming and Simulation,
Utrecht University, Utrecht, the Netherlands, pp. 183–190.

[Loscos 03] Loscos, C., Marchal, D., and Meyer, A. 2003. Intuitive crowd behaviour in
dense urban environments using local laws. In Proceedings of the Theory and Practice
of Computer Graphics, Manchester, U.K., p. 122.

[Mars 14] Mars, C. 2014. Simple formation assignment. GDC 2014 AI Summit, San Francisco,
CA.

[Millington 06] Millington, I. 2006. Artificial Intelligence for Games, pp. 41–202. Morgan
Kaufmann, San Francisco, CA.

223Hierarchical Architecture for Group Navigation Behaviors

[Mononen 10] Mononen, M. 2010. Navigation loop. In Paris Game/AI Conference 2010,
Paris, France.

[Moussaïd 10] Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., and Theraulaz, G. April
2010. The walking behaviour of pedestrian social groups and its impact on crowd
dynamics. PLoS ONE, 5(4):e10047.

[Musse 01] Musse, S. and Thalmann, D. 2001. Hierarchical model for real time simula-
tion of virtual human crowds. Transactions on Visualization and Computer Graphics,
7(2):152–164.

[Peters 09] Peters, C., Ennis, C., and O’Sullivan, C. 2009. Modeling groups of plausible
virtual pedestrians. IEEE Computer Graphics and Applications, 29(4):54–63.

[Pottinger 99] Pottinger, D. January 1999. Implementing coordinated movement. Available
from: http://www.gamasutra.com/view/feature/3314/implementing_coordinated_
movement.php?print=1 (accessed May 21, 2014).

[Qiu 10] Qiu, F. and Hu, X. 2010. Modeling dynamic groups for agent-based pedestrian
crowd simulations. In IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, Toronto, Canada, pp. 461–464.

[RecastDetour 14] Recast/Detour. 2014. Available from: https://github.com/memononen/
recastnavigation (accessed July 10, 2014) and https://github.com/masagroup/
recastdetour (accessed July 10, 2014).

[Reynolds 87] Reynolds, C. 1987. Flocks, herds and schools: A distributed behavioral
model. In ACM SIGGRAPH ‘87 Conference Proceedings, Anaheim, CA, pp. 25–34.

[Reynolds 99] Reynolds, C. 1999. Steering behaviors for autonomous characters.
In Proceedings of Game Developers Conference. Miller Freeman Game Group,
San Francisco, CA, pp. 763–782.

[Schuerman 10] Schuerman, M., Singh, S., Kapadia, M., and Faloutsos, P. 2010. Situation
agents: Agent-based externalized steering logic. In International Conference on
Computer Animation and Social Agents, University of California, Los Angeles, CA.

[Silveira 08] Silveira, R., Prestes, E., and Nedel, L. 2008. Managing coherent groups.
Computer Animation and Virtual Worlds, 19(3–4):295–305.

[van den Berg 08] van den Berg, J., Lin, M., and Manocha, D. 2008. Reciprocal velocity
obstacles for real-time multi-agent navigation. In International Conference on Robotics
and Automation, Pasadena, CA, pp. 1928–1935.

